PENGENALAN TENAGA LISTRIK

Pada sistem kelistrikan otomotif komponen-komponen yang digunakan untuk menghasilkan tenaga listrik terdiri dari:
a. Penghasil tenaga listrik ketika engine hidup, disebut "Alt"
b. Penyimpan tenaga listrik dalam bentuk kimia untuk digunakan selama engine tidak bekerja untuk waktu yang singkat, disebut "Baterai".

Baterai

Baterai merupakan perlengkapan kimia listrik yang menyimpan tenaga listrik dalam bentuk tenaga kimia. Baterai mensuplai tenaga listrik ke sistem-sistem kelistrikan untuk waktu yang singkat selama engine tidak hidup. Baterai harus dapat menyimpan cukup tenaga listrik untuk memutarkan engine saat di start.



Dasar Sistem Tenaga Listrik

Pada sistem tenaga listrik , terdapat beberapa komponen utama . Komponen tersebut terdiri atas Pembangkitan tenaga listrik, Transmisi tenaga listrik, serta Distribusi tenaga Listrik.Tiap komponen tersebut saling bergantung satu sama lain. Penjelasan tiap komponennya ada dibawah ini

*Pembangkit tenaga listrik (Pembangkitan) : Berfungsi membangkitkan energi listrik, dengan cara merubah potensi (energi) mekanik menjadi potensi (energi) listrik.

* Sistem transmisi ( penyaluran) : Proses menyalurkan energi listrik dari satu tempat ke tempat lain (dari pembangkit listrik ke gardu induk atau dari satu gardu induk ke gardu induk lainnya), dengan menggunakan penghantar yang direntangkan antara tiang-tiang (tower) melalui isolator-isolator, dengan sistem tegangan tinggi.

* Sistem distribusi (distribusi) : Pembagian atau penyaluran tenaga listrik ke instalasi pemanfaatan (pelanggan).

* Instalasi milik pelanggan (pemanfaatan) : Pihak yang memanfaatkan energi listrik.


Diagram Dasar Tenaga Listrik



Listrik yang dibangkitkan dalam sistem tenaga harus sesuai dengan kebutuhan, sebab listrik tidak dapat disimpan. Setelah dihasilkan listrik , lalu daya yang dihasilkan disalurkan ke pengguna melalui jaringan transmisi dan distribusi, yang terdiri dari trafo, jalur transmisi dan peralatan kontrol. Seluruh stasiun daya memiliki trafo pembangkit (GTs) yang meningkatkan tegangan menjadi tegangan ekstra tinggi (misal 150 KV, 500 KV) sebelum ditransmisikan. Mentransmisikan daya pada tegangan tinggi mempunyai keuntungan yaitu dapat mengurangi kehilangan selama transmisi . Kemudian, pada sub-stasiun dipasang trafo penurun, yang akan menurunkan tegangan untuk didistribusikan ke pengguna industri, perdagangan dan pemukiman melalui jalur distribusi.



Jenis-jenis Pembangkit Tenaga Listrik

Secara umum pembangkit tenaga listrik dikelompokkan menjadi dua bagian besar yaitu: pembangkit listrik thermis dan pembangkit listrik non-thermis. Pembangkit listrik thermis mengubah energi panas menjadi energi listrik, panas disini bisa dihasilkan oleh panas bumi, minyak, uap, dan yang lainnya. Hal ini dikatakan bahwa pembangkit thermis yang dihasilkan dari panas bumi mempunyai penggerak mula panas bumi biasanya disebut pembangkit panas bumi. Sedangkan pembangkit non thermis penggerak mulanya bukan dari panas, seperti pada pembangkit thermis penggerak mula inilah yang menentukan nama/jenis pembangkit tenaga listrik tersebut. Misalnya apabila penggerak mulanya berupa air maka air inilah yang menentukan jenis pembangkit tenaga non thermis tersebut biasanya disederhanakan sebutannya menjadi pembangkit listrik tenaga air (PLTA), dan lain sebagainya.

Dari dua bagian besar ini dapat dikelompokkan menjadi beberapa jenis yaitu:
A. Pembangkit Listrik Thermis :
1). Pembangkit Listrik Tenaga Panas Bumi (PLTP).
2). Pembangkit Listrik Tenaga Diesel (PLTD).
3). Pembangkit Listrik Tenaga Uap (PLTU).
4). Pembangkit Listrik Tenaga Gas (PLTG).
5). Pembangkit Listrik Tenaga Gas dan Uap (PLTGU).
6). Pembangkit Listrik Tenaga Nuklir (PLTN).

B. Pembangkit Listrik Non Thermis :
1). Pembangkit Listrik Tenaga Air (PLTA).
2). Pembangkit Listrik Tenaga Angin (PLTAngin).
3). Pembangkit Listrik Tenaga Surya (PLTS)

Selain beberapa jenis yang disebutkan di atas, masih terdapat jenis pembangkit tenaga listrik yang lain, misalnya pembangkit listrik yang digerakkan oleh tenaga surya, energi gelombang laut dan energi angin.


Proses Produksi Tenaga Listrik PLTG
Pusat Listrik Tenaga Gas membutuhkan udara yang baik, bersih dan dalam jumlah yang tak terhingga. Proses pembangkitan listrik tenaga gas adalah sebagai berikut: Udara bertekanan 1 atmosfer pertama-tama disaring oleh saringan udara (aur filter) kemudian melalui Inlet Compressor (1) udara hasil saringan masuk ke dalam Compressor (2) untuk dimampatkan. Udara hasil pemampatan akan bercampur dengan bahan bakar yang dipompa ke ruang bakar/ combustion chamber (3). Proses ini disebut proses pengabutan karena membentuk kabut campuran udara dan bahan bakar yang digunakan dalam proses pembakaran di dalam runag bakar. Hasilnya adalah panas (energi panas) yang digunakan untuk memutar rotor/poros pada Turbin Gas (4). Sisa gas dari proses pembakaran dengan suhu 460 derajat Celcius dibuang ke udara melalui exhaust (5), sementara itu rotor/poros pada turbin gas (4) melalui suatu sistem kopling akan memutar rotor/poros elektro-magnet pada generator (6) yang menyebabkan medan magnet berotasi di dalam kumparan kawat. Pada kumparan kawat akan timbul energi listrik. Rotor/poros generator (6) akan berputar dengan kecepatan 3000 putaran/menit yang berarti perubahan tegangan akan menjadi 50 kali setiap detik, sehingga akan menghasilkan listrik dengan frekuensi 50Hz. Untuk pendinginan ruang bakar (3) dan turbin gas (4), digunakan aliran udara dari Compressor.

 

Pembangkit Listrik Tenaga Diesel

 

PLTD adalah suatu instalasi pemabngkit listrik yang terdiri dari suatu unit pembangkit ( SPD ) dan sarana pembangkitan .
Mesin Diesel adalah penggerak utama untuk mendapatkan energi listrik dan dikeluarkan oleh Generator . Pada mesin Diesel Energi Bahan bakar diubah menjadi energi mekanik dengan proses pembakaran didalam mesin itu sendiri.
Mesin Diesel pada saat ini sudah banyak mengalami perkembangan dalam pemakaian untuk angkutan darat dan laut, kemudian pembangkitan dalam daya kecil dan menengah bahkan sampai daya besar sudah ada yang menggunakannya.
Untuk mempermudah dalam melakukan pemeliharaan Mesin Diesel para teknisi harus mempunyai dasar-dasar pengetahuan mengenai Mesin Diesel yang baik, agar setiap melakukan pemeliharaan para teknisi dapat memperlakukan setiap komponen yang berada dalam mesin, sesuai dengan konstruksinya.

 

Selain pemahaman tentang konstruksi mesin, sebagai dasar pengenalan mesin mau tidak mau pengetahuan tentang prinsip kerja Mesin Diesel harus dikuasai dengan baik.

Dasar pengetahuan ini memudahkan untuk mengikuti setiap terjadi perkembangan tentang mesin yang semakin lama semakin dituntut lebih

baik lagi dari segi kinerja, pemakaian bahan bakar, dimensi mesin, tingkat polusidan konstruksinya yang semakin kompak dan bobotnya ringan.

Kemudian untuk mengatasi gangguan menjadi lebih mudah mendeteksi lebih awal akan terjadinya gangguan serta memudahkan menentukan jenis gannguan serta penanggulangannya.


Panas yang dikeluarkan mesin diesel semuanya bisa dimanfaatkan misalnya energi gas hanya 20% yang bisa dimanfaatkan secara ekonomis.

Radiasi dan kerugian lain 9,15 %
Panas dalam minyak pelumas 4,61 %
Panas dalam air selubung 13,84 %
Panas dalam gas buang 33,20 %
Shaf Work 39,20 %

Mesin diesel menghasilkan/mengeluarkan gas panas dari ketel dan selubung mesin jadi produksi energi termalnya cukup tinggi sehingga energi ini bisa digunakan untuk keperluan pembangkit yang berarti bisa dihemat biaya operasi pembangkit. Hal ini karena jumlah bahan bakar yang akan digunakan untuk memanaskan pembankit bisa ditiadakan dan kalau panasnya masih bersisa maka bisa dijual atau disimpan. Dengan demikian penggunaan PLTD untuk pembangkitan sendiri lebih menguntungkan dari pada menggunakan pembangkit PLN. Hal ini karena pada pembangkit PLN ada biaya transmisi/distribusi sedangkan pada pembangkitan sendiri selain tidak ada biaya transmisi/distribusi kemudian ditambah lagi dengan adanya hasil sampingan yang berupa energi termal yang bisa dimanfaatkan untuk memanaskan mesin pembangkit yang biasanya menggunakan bahan bakar sehingga bisa menghemat biaya bahan bakar. 



Pembangkit Listrik Tenaga Panas Bumi

Pembangkit Listrik Tenaga Panas Bumi adalah Pembangkit Listrik (Power generator) yang menggunakan Panas bumi (Geothermal) sebagai energi penggeraknya. Indonesia dikaruniai sumber panas bumi yang berlimpah karena banyaknya gunung berapi di indonesia, dari pulau-pulau besar yang ada, hanya pulau Kalimantan saja yang tidak mempunyai potensi panas bumi.
Untuk membangkitkan listrik dengan panas bumi dilakukan dengan mengebor tanah di daerah yang berpotensi panas bumi untuk membuat lubang gas panas yang akan dimanfaatkan untuk memanaskan ketel uap (boiler) sehingga uapnya bisa menggerakkan turbin uap yang tersambung ke Generator.
Untuk panas bumi yang mempunyai tekanan tinggi, dapat langsung memutar turbin generator, setelah uap yang keluar dibersihkan terlebih dahulu. Pembangkit listrik tenaga panas bumi termasuk sumber Energi terbaharui. 

Panas Bumi (Geothermal)

Energi Geo (Bumi) thermal (panas) berarti memanfaatkan panas dari dalam bumi. Inti planet kita sangat panas- estimasi saat ini adalah,500 celcius (9,932 F)- jadi tidak mengherankan jika tiga meter teratas permukaan bumi tetap konstan mendekati 10-16 Celcius (50-60 F) setiap tahun. Berkat berbagai macam proses geologi, pada beberapa tempat temperatur yang lebih tinggi dapat ditemukan di beberapa tempat.



Menempatkan panas untuk bekerja

Dimana sumber air panas geothermal dekat permukaan, air panas itu dapat langsung dipipakan ke tempat yang membutuhkan panas. Ini adalah salah satu cara geothermal digunakan untuk air panas, menghangatkan rumah, untuk menghangatkan rumah kaca dan bahkan mencairkan salju di jalan.

Bahkan di tempat dimana penyimpanan panas bumi tidak mudah diakses, pompa pemanas tanah dapat membahwa kehangatan ke permukaan dan kedalam gedung. Cara ini bekerja dimana saja karena temparatur di bawah tanah tetap konstan selama tahunan. Sistem yang sama dapat digunakan untuk menghangatkan gedung di musim dingin dan mendinginkan gedung di musim panas.


Pembangkit listrik

Pembangkit Listrik tenaga geothermal menggunakan sumur dengan kedalaman sampai 1.5 KM atau lebih untuk mencapai cadangan panas bumi yang sangat panas. Beberapa pembangkit listrik  ini menggunakan panas dari cadangan untuk secara langsung menggerakan turbin. Yang lainnya memompa air panas bertekanan tinggi ke dalam tangki bertekanan rendah. Hal ini menyebabkan “kilatan panas” yang digunakan untuk menjalankan generator turbin. Pembangkit listrik paling baru menggunakan air panas dari tanah untuk memanaskan cairan lain, seperti isobutene, yang dipanaskan pada temperatur rendah yang lebih rendah dari air. Ketika cairan ini menguap dan mengembang, maka cairan ini akan menggerakan turbin generator.


Keuntungan Tenaga Panas Bumi

Pembangkit listrik tenaga Panas Bumi  hampir tidak menimpulkan polusi atau emisi gas rumah kaca. Tenaga ini juga tidak berisik dan dapat diandalkan. Pembangkit listik tenaga geothermal menghasilkan listrik sekitar 90%, dibandingkan 65-75 persen pembangkit listrik berbahan bakar fosil.

Sayangnya, bahkan di banyak negara dengan cadangan panas bumi melimpah, sumber energi terbarukan yang telah terbukti ini tidak dimanfaatkan secara besar-besaran.



 Pembangkit Listrik Tenaga Uap

Jika menerangkan tentang Siklus PLTU, hal pertama yang harus diketahui adalah bahan baku dari PLTU itu sendiri yakni air, serta bahan baker tentunya. Air ini bukan sembarang air. Air yang digunakan dalam siklus PLTU ini disebut air demin, yakni air yang mempunyai kadar conductivity (Kemampuan untuk menghantarkan listrik) sebesar 0.2 us (mikro siemen). Sebagai perbandingan air mineral yang kita minum sehari-hari mempunyai kadar conductivity Sekitar 100 – 200 us. Untuk mendapatkan air demin ini, setiap unit PLTU biasanya dilengkapi dengan Desalination Plant dan Demineralization Plant yang berfungsi untuk memproduksi air demin ini. Tapi disini tidak dibahas tentang Desalination Plant maupun Demineralization Plant.
Jika kita melihat secara sederhana bagaimana siklus PLTU itu, lihat saja proses memasak air. Air dimasak hingga menguap dan uap ini lah yang digunakan untuk memutar turbin dan generator yang nantinya akan menghasilkan energi listrik.
Pertama-tama air demin ini berada di sebuah tempat bernama Hotwell.
Dari Hotwell, air mengalir menuju Condensate Pump untuk kemudian dipompakan menuju dearator. Lokasi hotwell dan condensate pump terletak di lantai paling dasar dari pembangkit atau biasa disebut Ground Floor. Sedangkan letak dearator yang akan dituju oleh si air ini berada di lantai atas (tetapi bukan yang paling atas). Sebagai ilustrasi di PLTU Muara Karang unit 4, dearator terletak di lantai 5 unit dari 7 lantai yang ada.
Di dearator air akan mengalami proses pelepasan ion-ion mineral yang masih tersisa di air dan tidak diperlukan seperti Oksigen dan lainnya. Agar proses pelepasan ini berlangsung sempurna, suhu air harus memenuhi suhu yang disyaratkan. Oleh karena itulah selama perjalanan menuju Dearator, air mengalamai beberapa proses pemanasan oleh peralatan yang disebut LP (Low Pressure) Heater.
Dari dearator, air turun kembali ke Ground Floor. Sesampainya di Ground Floor, air langsung dipompakan oleh Boiler Feed Pump / BFP (Pompa air pengisi) menuju Boiler atau tempat “memasak” air. Bisa dibayangkan Boiler ini seperti panci, tetapi panci berukuran raksasa. Air yang dipompakan ini adalah air yang bertekanan tinggi, karena itu syarat agar uap yang dihasilkan juga bertekanan tinggi. Karena itulah konstruksi PLTU membuat dearator berada di lantai atas dan BFP berada di lantai dasar. Karena dengan meluncurnya air dari ketinggian membuat air menjadi bertekanan tinggi.
Lagi-lagi, sebelum masuk boiler air mengalami beberapa proses pemanasan di HP (High Pressure) Heater. Setelah itu barulah air masuk boiler yang letaknya berada di lantai atas.
Oke sampai disini air sudah masuk boiler. Penjelasa siklus air berhenti untuk sementara.
Di Boiler inilah seperti yang dikatan tadi, terjadi proses memasak air agar menjadi uap. Untuk memasak air diperlukan api. Dan untuk membuat api diperlukan udara, panas dan bahan bakar.
Bahan bakar dipompakan kedalam boiler melalui Fuel oil Pump. Bahan bakar PLTU bermacam-macam. Ada yang menggunakan minyak, minyak dan gas atau istilahnya dual firing dan batubara.
Sedangkan udara di produksi oleh Force Draft Fan (FD Fan). FD Fan mengambil udara luar untuk membantu proses pembakaran di boiler. Dalam perjalananya menuju boiler, udara tersebut dinaikkan suhunya oleh air heater (pemanas udara) agar proses pembakaran bisa terjadi di boiler.
Sekarang kembali ke siklus air. Setelah terjadi pembakaran, air mulai berubah wujud menjadi uap. Namun uap hasil pembakaran ini belum layak untuk memutar turbin, karena masih berupa uap jenuh atau uap yang masih mengandung kadar air. Kadar air ini berbahaya bagi turbin, karena dengan putaran hingga 3000 rpm, setitik air sanggup untuk membuat sudu-sudu turbin menjadi terkikis.
Untuk menghilangkan kadar air itu, uap jenuh tersebut di keringkan di super heater sehingga uap yang dihasilkan menjadi uap kering. Uap kering ini yang digunakan untuk memutar turbin.
Turbin berputar, otomastis generator akan berputar, karena berada pada satu poros. Generator inilah yang menghasilkan energi listrik. Pada generator terdapat medan magnet raksasa. Perputaran generator menghasilkan beda potensial pada magnet tersebut. Beda potensial inilah cikal bakal energi listrik.
Energi listrik itu dikirimkan ke trafo untuk dirubah tegangannya dan kemudian disalurkan melalui saluran transmisi PLN.
Uap kering yang digunakan untuk memutar turbin akan turun kembali ke lantai dasar. Uap tersebut mengalami proses kondensasi didalam kondensor sehingga pada akhirnya berubah wujud kembali menjadi air dan masuk kedalam hotwell.
Itulah uraian singkat dari siklus PLTU. Siklus PLTU ini adalah siklus tertutup yang idealnya tidak memerlukan lagi air jika memang kondisinya sudah mencukupi. Tetapi kenyataannya masih diperlukan banyak air penambah setiap hari. Hal ini mengindikasikan banyak sekali kebocoran di pipa-pipa saluran air maupun uap di dalam sebuah PLTU.




Pembangkit Listrik Tenaga Gas

 

PLTG adalah Pusat listrik tenaga gas, yang prinsip kerjanya pengkompresian udara dan pemanasan udara tersebut dengan penambahan bahan bakar , gas panas tersebut digunakan untuk memutar turbin , sebagai pengerak mula pemutar generator pembangkit. Gas panas yang dihasilkan dalam ruang bakar dapat meningkatkan temperatur hingga 1100 derajat celcius, berkenaan dengan temperatur yang sedemikian tinggi tersebut perlu dilakukan pemilihan matrial hot gas patch , sehingga material tersebut dapat dipergunakan pada kondisi tersebut secara aman dan andal. Kondisi temperature kerja yang sedemikian tinggi ini akan berdampak terhadap umur dari material hot gas patch gas turbin tersebut, untuk itu sangat perlu sekali penentuan jam operasi pembangkit sebagai acuan penentuan pelaksanaan pemeliharaan periodic unit pembangkit. Faktor utama penentuan pelaksanaan Pemeliharan periodic gas turbin adalah jam operasi pembangkit . Adapun jenis pemeliharaan gas turbin adalah Combustion inspection/ minor inspection , hot gas patch inspection dan over haul. Combustion inspection/minor inspection dilaksanakan setiap 4000-8000 jam, hotgaspatch inspection dilaksanakan setiap 33000 jam operasi dan major over haul dilaksanakan setiap 66000 jam operasi. Penentuan jam operasi PLTG tidak hanya ditentukan oleh lama pembangkit tersebut beroperasi, tetapi juga harus ditambahkan dengan suatu faktor operasi sehingga dapat mencerminkan umur operasi pembangkit tersebut secara tepat. Faktor koreksi tersebut merupakan fungsi dari fluktuasi temperature yang telah terjadi pada unit operasi yang diakibatkan oleh tripnya unit pembangkit atau disebabkan oleh fluktuasi beban yang sedemikian tinggi serta fluktuasi temperature yang disebabkan oleh start up PLTG, kualitas bahan baker yang dipergunakan. Jam operasi pembangkit yang merupakan gabuangan dari lama pembangkit beroperasi dan factor factor koreksi disebut jam equivalent operasi pembangkit (Equivalent operating hours, EOH), Ketepatan penentuan jam opersi pembangkit akan sangat menentukan sekali besar efisiensi operasi pembangkit , keandalan operasi pembangkit serta besar biaya yang dikeluarkan dalam pengoperasian unit pembangkit tersebut sebagai dampak dari kemunduran jadwal pemeliharaan periodic pembangkit . Untuk itu penentuan jam opersi pembangkit merupakan dasar dari pengelolaan power plant guna mencapai tingkat efisiensi yang diharapkan, keandalan operasi yang dipersyaratkan serta dengan biaya pengoperasian pembangkit yang semurah mungkin.

PLTG adalah Pusat listrik tenaga gas, yang prinsip kerjanya pengkompresian udara dan pemanasan udara tersebut dengan penambahan bahan bakar , gas panas tersebut digunakan untuk memutar turbin , sebagai pengerak mula pemutar generator pembangkit. Dalam operasinya unit pembangkit jenis ini dapat memakai bahan bakar gas , minyak (HSD) ataupun kedua duanya (mixed operation). PLTG merupakan jenis pembangkit listrik yang dapat dibangun dengan waktu yang relative cepat, walaupun secara efisiensi teramat rendah namun jenis pembangkit ini sangat disukai oleh system ketenagalistrikan karena kemampuan operasinya yang teramat cepat, sehingga sangat cocok dipergunakan sebagai unit pemikul beban puncak ( peak load ), disamping itu gas turbin dapat dijadikan sebagai unit recovery pada saat system ketenagalistrikan collapse. Untuk mempertahankan level performance yang diinginkan gas turbin selalu dilakukan perawatan/ pemeliharaan pada waktu-waktu tertentu. Sehubungan blade turbin menerima paparan langsung gas panas yang temperaturenya hingga 1100 C, maka gas turbin perlu dilakukan pengelolaan khusus dibanding unit pembangkit lainnya. Gas turbin dalam pengelolaan selalu mengacu pada Time Base Maintenace, yaitu suatu model pemeliharaan yang dilakukan terhadap unit pembangkit berdasarkan waktu/ jam operasinya disamping pemeliharaan routinnya.

Gas turbin dalam operasinya terdiri dari beberapa komponen utama sebagai berikut:

a. Kompressor

Yang fungsi utamanya adalah mengkompresikan udara dan mengalirkan udara tersebut ke ruang bakar

b. Ruang Bakar

Berfungsi sebagai tempat pembakaran dan pemanasan udara hasil dari kompressor.

c. Turbin

Yang fungsi utamanya adalah merubah energi dari gas panas hasil dari ruang bakar menjadi energy mekanis.

d. Generator

Yang fungsi utamanya adalah sebagai alat untuk merubah energy mekanis menjadi energy listrik.

e. Alat alat bantu

Peralatan bantu ini merupakan sekumpulan peralatan yang membantu proses pengoperasian gas turbin dapat berlangsung, yang terdiri dari sistem bahan bakar, sistem pelumasan, sistem pendinginan, air filtering system, electrical dan instrumentasi system.

Untuk memperoleh gambaran yang jelas mengenai gas turbin , dapat dilihat pada gambar skematik sebagai berikut:





Pembangkit Listrik Tenaga Gas dan Uap

PLTGU adalah sebuah pembangkitan listrik dimana prosesnya terdiri dari dua yaitu proses dengan menggunakan Turbin Gas dan Turbin Uap. Biaya produksi dari PLTGU apabila menggunakan bahan bakar yang sama maka akan lebih murah biayanya apabila dibandingkan hanya dengan Turbin Gas saja.

Komponen-komponen peralatan dari PLTGU adalah
1. Turbin Gas Plant
    Yang terdiri atas Compressor, Combustor Chamber, Turbin Gas, Generator.
2. Heat Recovery Steam Generator ( HRSG )
3. Steam Turbin Plant
    Yang terdiri atas HP & LP Turbin, Condensor dan Generator.

Proses Produksi Listrik
Adapun proses produksinya terdiri atas dua yitu dengan menggunakan Turbin Gas Saja yang sering disebut dengan proses Open Cycle ( O/C ) dan dengan menggunakan Turbin Gas dan Turbin Uap yang sering disebut dengan Combine Cycle ( C/C ) dan inilah prinsip PLTGU. 

Prinsip kerjanya yaitu dalam suatu proses pembakaran harus membutuhkan tiga hal yaitu Bahan Bakar, Udara dan Api. Udara luar dimasukkan ke kompressor untuk dikompresi sehingga tekanannya akan meningkat, udara yang telah dikompresi ini kemudian dimasukkan ke combustion chamber ( ruang bakar ), didalam ruang bakar terdapat prinsip segitiga api, dimana akan ada proses pembakaran udara oleh bahan bakar berupa fuel oil (HSD/high speed diesel) setelah dipicu oleh alat pemicu (igniter) sehingga akan menghasilkan gas yang bertekanan tinggi. Gas hasil pembakaran ini kemudian dialirkan ke turbin untuk menggerakkan sudu-sudu dari turbin. Karena turbin berada pada satu poros dengan generator maka ketika turbin berputar secara otomatis generator juga akan berputar dan akan merubah energi mekanik yang dihasilkan oleh turbin menjadi energi listrik.
Gas buang dari sebuah operasi PLTG yang masih mempunyai temperature tinggi dimanfaatkan kembali untuk menguapkan air pada HRSG (heat recovery steam generator). Air kondensat dari condenser dialirkan ke pre heater sebagai proses pemanasan awal. Dari pre heater air akan dialirkan ke dalam deaerator, fungsi dari deaerator ini adalah untuk menghilangkan kandungan O2 dalam air dengan cara diinjeksi dengan hidrazin (N2H4). Air yang keluar dari deaerator dibagi menjadi dua aliran yaitu untuk aliran low pressure (LP) dan high pressure (HP). Untuk LP, air dari deaerator dimasukkan ke dalam LP economizer untuk dipanaskan lebih lanjut, kemudian air akan dialirkan ke LP drum untuk memisahkan antara air dan uap yang telah terbentuk. Dari LP drum air akan dimasukkan ke dalam LP evaporator untuk proses penguapan air. Air yang keluar dari evaporator telah menguap, uap LP ini kemudian dialirkan ke LP steam turbin. Sedangkan untuk HP, air dari deaerator akan dialirkan kedalam HP economizer 1 dan HP economizer 2, dari HP economizer 2 air kemudian dialirkan ke HP drum. Dari HP drum air diuapkan di dalam HP evaporator. Uap yang telah terbentuk di dalam evaporator kemudian dialirkan ke HP Superheater 1 dan 2, fungsinya adalah memanaskan kembali uap yang telah terbentuk menjadi uap superheated (uap kering). Uap superheated ini kemudian dialirkan ke HP steam turbine,untuk memutar sudu-sudu turbin. Uap bekas dari HP steam turbine kemudian dialirkan ke LP steam turbin dan bersama-sama dengan LP Steam akan memutar LP Steam Turbin. Seperti pada GT, turbin pada ST juga dikopel dengan generator sehingga ketika turbin berputar maka secara otomatis generator juga akan berputar dan akan merubah energi mekanik dari turbin menjadi energi listrik. Uap bekas dari LP steam turbin kemudian dialirkan ke condenser untuk dikondensasikan menjadi air dan akan dimasukkan kembali ke HRSG.





 Pembangkit Listrik Tenaga Nuklir

adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik.

PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1200 MWe.

Hingga tahun 2005 terdapat 443 PLTN berlisensi di dunia , dengan 441 diantaranya beroperasi di 31 negara yang berbeda . Keseluruhan reaktor tersebut menyuplai 17% daya listrik dunia.

Reaktor Nukliryang pertama kali membangkitkan listrik adalah stasiun pembangkit percobaan EBR-1 pada 20 Desember 1951 di dekat Arco, idaho. Amerika Serikat. Pada 27 Juni 1954, PLTN pertama dunia yang menghasilkan listrik untuk jaringan listrik (power grid) mulai beroperasi di Obninski, Uni Soviet. PLTN skala komersil pertama adalah Calder Hall, di Inggris yang dibuka pada 17 Oktober 1956

Jenis-jenis PLTN

PLTN dikelompokkan berdasarkan jenis reaktor yang digunakan. Tetapi ada juga PLTN yang menerapkan unit-unit independen, dan hal ini bisa menggunakan jenis reaktor yang berbeda. Sebagai tambahan, beberapa jenis reaktor berikut ini, di masa depan diharapkan mempunyai sistem keamanan Pasif

[sunting] Reaktor Fisi

Reaktor daya fisi membangkitkan panas melalui reaksi fisi nuklir dari isotop fissil uranium dan plutonium.

Selanjutnya reaktor daya fissi dikelompokkan lagi menjadi:

  • Reaktor thermal menggunakan moderator neutron untuk melambatkan atau me-moderate neutron sehingga mereka dapat menghasilkan reaksi fissi selanjutnya. Neutron yang dihasilkan dari reaksi fissi mempunyai energi yang tinggi atau dalam keadaan cepat, dan harus diturunkan energinya atau dilambatkan (dibuat thermal) oleh moderator sehingga dapat menjamin kelangsungan reaksi berantai. Hal ini berkaitan dengan jenis bahan bakar yang digunakan reaktor thermal yang lebih memilih neutron lambat ketimbang neutron cepat untuk melakukan reaksi fissi.
  • Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. Karena reaktor cepat menggunkan jenis bahan bakar yang berbeda dengan reaktor thermal, neutron yang dihasilkan di reaktor cepat tidak perlu dilambatkan guna menjamin reaksi fissi tetap berlangsung. Boleh dikatakan, bahwa reaktor thermal menggunakan neutron thermal dan reaktor cepat menggunakan neutron cepat dalam proses reaksi fissi masing-masing.
  • Reaktor Subkritis menggunakan sumber neutron luar ketimbang menggunakan reaksi berantai untuk menghasilkan reaksi fissi. Hingga 2004 hal ini hanya berupa konsep teori saja, dan tidak ada purwarupa yang diusulkan atau dibangun untuk menghasilkan listrik, meskipun beberapa laboratorium mendemonstrasikan dan beberapa uji kelayakan sudah dilaksanakan.

    Reaktor thermal
  • Light Water Reactor (LWR) 
  • Boiling Water Reactor (BWR)
  • Pressurized Water Reactor (PWR)
  • SSTAR, a sealed, reaktor untuk jaringan kecil, mirip PWR


  • Moderator Graffit: 

    • Magnoc
    • Advanced Gas-cooled Reactor(AGR)
    • High Temperatute Gas-cooled Reactor(HTGR)
    • RBMK
    • Pebble Bed Reactor(PBMR)

  • Moderator Air Berat:
    • SGHWR
    • CANDU

Reaktor cepat

Meski reaktor nuklir generasi awal berjenis reaktor cepat, tetapi perkembangan reaktor nuklir jenis ini kalah dibandingkan dengan reaktor thermal.

Keuntungan reaktor cepat diantaranya adalah siklus bahan bakar nuklir yang dimilikinya dapat menggunakan semua uranium yang terdapat dalam uranium alam, dan juga dapat mentransmutasikan radio isotop yang tergantung di dalam limbahnya menjadi material luruh cepat. Dengan alasan ini, sebenarnya reaktor cepat secara inheren lebih menjamin kelangsungan ketersedian energi ketimbang reaktor thermal. Lihat juga reaktor fast breeder. Karena sebagian besar reaktor cepat digunakan untuk menghasilkan plutonium, maka reaktor jenis ini terkait erat dengan poliferasi nuklir.

Lebih dari 20  (prototype) reaktor cepat sudah dibangun di Amerika Serikat, Inggris, Uni Sovyet, Perancis, Jerman, Jepang, India, dan hingga 2004, 1 unit reaktor sedang dibangun di China. Berikut beberapa reaktor cepat di dunia:

  • EBR-1 , 0.2 MWe, AS, 1951-1964.
  • Dounreay Fast Reactor, 14 MWe, Inggris, 1958-1977.
  • Enrico Fermi Nuclear Generating Station Unit 1, 94 MWe, AS, 1963-1972.
  • EBR-II, 20 MWe, AS, 1963-1994.
  • Phoenik, 250 MWe, Perancis, 1973-sekarang.
  • BN-350, 150 MWe plus desalination, USSR/Kazakhstan, 1973-2000.
  • Prototype Fast Reactor, 250 MWe, Inggris, 1974-1994.
  • BN-600, 600 MWe, USSR/Russia, 1980-sekarang.
  • Superphenix, 1200 MWe, Perancis, 1985-1996.
  • FBTR, 13.2 MWe, India, 1985-sekarang.
  • Monju, 300 MWe, Jepang, 1994-sekarang.
  • PFBR, 500 MWe, India, 1998-sekarang.

(Daya listrik yang ditampilkan adalah daya listrik maksimum, tanggal yang ditampilkan adalah tanggal ketika reaktor mencapai kritis pertama kali, dan ketika reaktor kritis untuk teakhir kali bila reaktor tersebut sudah di dekomisi (decommissioned).

Reaktor Fusi

Artikel utama: Daya Fusi 
Fusi Nuklir menawarkan kemungkinan pelepasan energi yang besar dengan hanya sedikit limbah radio aktif yang dihasilkan serta dengan tingkat keamanan yang lebih baik. Namun demikian, saat ini masih terdapat kendal-kendala bidang keilmuan, teknik dan ekonomi yang menghambat penggunaan energi fusi guna pembangkitan listrik. Hal ini masih menjadi bidang penelitian aktif dengan skala besar seperti dapat dilihat di JET, ITER, dan Z machine.

Keuntungan dan kekurangan

Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah:

  • Tidak menghasilkan emisi gas rumah kaca (selama operasi normal) - gas rumah kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit menghasilkan gas)
  • Tidak mencemari udara - tidak menghasilkan gas-gas berbahaya sepert karbon monoksida, sulfur dioksida, aerosol, merkuri, nitrogen oksida, partikulate atau asap fotokimia
  • Sedikit menghasilkan limbah padat (selama operasi normal)
  • Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan
  • Ketersedian bahan bakar yang melimpah - sekali lagi, karena sangat sedikit bahan bakar yang diperlukan
  • Baterai nuklir

Berikut ini berberapa hal yang menjadi kekurangan PLTN:

  • Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobyl (yang tidak mempunyai Containment Building)
  • Limbah nuklir - Limbah Radio Aktif tingkat tinggi yang dihasilkan dapat bertahan hingga ribuan tahun